人才紧缺 人工智能专业引发新热门 |
点击次数:2735 发布时间:2018-8-29 16:15:41 |
上个礼拜,北京航空航天大学主办了国内首届人工智能本科专业研讨会。会上清华大学、南京大学、西安交通大学等国内26所大学共同发布了《关于设置人工智能专业建议书》,呼吁尽快设置本科人工智能专业。
毫无疑问,这个高考季当中,人工智能已经成为了一个热门话题。伴随着知名高校的呼吁,我们还可以看到各个名牌大学的人工智能学院、人工智能研究院如雨后春笋一样成长起来。中国科学院、南京大学、清华大学,都已经在一年内成立了类似研究机构。 而政策层面,国家《新一代人工智能发展规划》中也明确提出要建设人工智能学科。人工智能要发展,需要人才和学术建设应该是毫无争议的问题。 但关于人工智能是不是要在今天就成为本科专业,却是个充满争议的话题。 在目前的学科规划中,人工智能的主体是计算机科学下的二级学科。一般要到研究生阶段才能选择攻读。与此同时,AI相关专业还散落在数学、信息科学,甚至社会学、心理学、生物学当中。 有人认为,这样的规划已经无法满足AI发展的真实需求;也有人认为AI刚刚发展起来,就要高校体系来给予配合,有点过于冒进了。 在大多数省份,现在还是填报志愿的阶段。咱们不妨来透视一下这场争议中的几个观点,如果身边有学子正在纠结于是否选择,或者如何选择AI相关专业,不妨思考这几个声音之后再来判断。 反方观点A:AI不稳定,就业有风险 让我们先从反对观点说起。 众所周知,本科生不会都进入研究生阶段继续攻读,那么AI本科专业存在的意义,当然就是能为大量本科生提供就业技能与机遇。 但就今天的AI来说,是否能为四五年后,以至于长期投入社会的大量人才提供就业机会呢?这可能谁也说不好。 AI的发展足够快,需要人才足够多,这在今天是没有问题。但若干年后的AI会依旧能创造大量就业投入吗?甚至说若干年后的AI,是否还和现在我们看到的机器学习统摄下的AI需求一致?这些都是问号。 在很多人看来,加快人工智能进本科的进度,同时也意味着把这些大学生从对计算机科学的学习中隔离出来。那么假如学成后AI不那么火热了,就业机会减少;或者AI在此期间经历了快速的技术发展,学到的东西不足以致用,同时也不能让每个人都继续学术研究。最终岂不是把就业风险施加到了学生身上? 因为某个领域火爆,大学就争先恐后设立专业,结果学成出来发现满不是那么回事了。这种情况在中国并不算少见。那么这种情况下,把AI从计算机科学领域独立出来,似乎还不够稳妥。 毕竟不能让选专业这个很可能影响终生的大事,变成一场赌博。 反方观点B:泡沫可耻,跟风有害 AI发展过快,带起了大量泡沫,这应该是个不争的事实。那么高校过快迎合风口,设置AI本科专业,很可能会变成泡沫的催化剂。 另一种观点认为,AI设置本科专业在很大程度上是有道理的。但这个合理性仅仅限定在师资力量齐备,有广泛研究优势的部分高校中。一旦阀门打开,千奇百怪的学校跟风设置AI本科专业,很可能会贻害学生。 我们提起国内高校的AI大牛,似乎每个名字和他们所在的学校与研究机构都让人感觉熟悉。换句话说,大部分国内高校对于AI这东西是相当陌生的。现在的人工智能研究,目前仅仅是小部分学校与大牛的“专属”,而一旦各种地方院校,甚至资质不佳的合办院校要争取AI风口。那么很可能强行设置一批师资和科研项目,这对于整个AI学术是有害无益的。 归根结底一句话,头部学校准备好了开AI本科,但后面茫茫多的学校,真的有老师和研究力量去支撑本科的AI教学吗? 而AI这块滚热的蛋糕,随便想想就知道是不能放弃的。如果AI本科教育突然袭来,如何抵制跟风者扰乱AI教育,这个问题似乎还没有答案。 正方观点A:人才缺口,真的已经很大很大了 以上两种反对观点,很大程度上是出于对AI未来的怀疑与不信任。但支持AI快速成为本科专业的声音,则更多着眼于AI的现在。 AI的今天,一个最基本的情况,就是缺的人真的太多太多太多了。去年校招季,在北京招一个刚毕业没有任何成果的AI研究生,就需要年薪30万的代价。这当然有风口的加持,但AI岗位缺人的状况也可见一斑。根据相关报告统计,到2017年年底,中国AI人才缺口已经超过了百万级,而在今年这个缺口开始进一步拉大。 事实上,AI人才的缺口不仅限于中国,即使是硅谷,也在每天经历着AI岗位需求的扩大。李开复曾经提出:“在硅谷,做深度学习的人工智能博士生,现在一毕业就能拿到年薪200万到300万美元的录用通知,三大公司(谷歌、脸书和微软)都在用不合理的价钱挖人。”同样在欧洲、印度,加快培养AI人才,尤其是中低端人才都是国家教育体系的重要任务之一。 在巨大的人才缺失之下,是限行AI人才培养效率有点慢。一般来说,一个学计算机的本科生,在大三大四时候才能在某些选修课中接触人工智能。而如果想要攻读人工智能方向要到研究生之后。再加上研究生学习中往往没有经历过算法应用的实践,毕业到企业后还需要经历一到两年的再培养。这也意味着,一个AI人才一般要到27岁之后才能上岗,这显然无法供给今天AI产业的发展速度。事实上,AI产业是一个金字塔型架构。不仅需要高端的逻辑与算法人才,还需要完成大量应用型,甚至是数据型工作。这些工作很大一部分都可以给本科生作为实习机会,而且企业往往欢迎导师带队的本科生入驻实习。 这样一些简单的AI工作,入职者可以从27岁提前到20岁左右,这对于整个AI产业的劳动力供给是效能巨大的。同时,高收入和高就业率也在吸引着学生的目光,让他们辛苦绕一圈才能进入AI,这好像也有点残忍。 |
上一条:工业软件助力制造升级,解决这些问题或迎来突破; | 返回 |
下一条:工厂具有自动诊断的新成果要了解下吗? |